N = 37, t = 5, v = 2 - Classification of (λ; y)-balanced CAs with N = 37 rows, strength t = 5 and alphabet size v=2 in the format CAK# time, where # represents the number of non-equivalent balanced CAs and the time is given in seconds.

Previous table: (36;5,k,2)Back to overviewNext table: (38;5,k,2)
λ (18,9,4,2,1) (18,8,4,2,1) (17,8,4,2,1) (16,8,4,2,1)
y CAKλy# time (s) CAKλy# time (s) CAKλy# time (s) CAKλy# time (s)
(19,10,5,3,2) 0 0 ζ ζ
(19,10,6,3,2) 0 66 0 66ζ 66ζ
(19,10,6,4,2) 0 612 0 612ζ 612ζ
(19,10,6,4,3) 0 612 0 612ζ 612ζ
(19,11,6,3,2) ω 66 0 66ζ 66ζ
(19,11,6,4,2) ω 658 0 658ζ 658ζ
(19,11,7,4,2) ω 666 0 666ζ 666ζ
(19,11,6,4,3) ω 686 0 686ζ 686ζ
(19,11,7,4,3) ω 6130 0 6130ζ 6130ζ
(19,11,7,5,3) ω 6146 0 6146ζ 6146ζ
(19,11,7,5,4) ω 6152 0 6152ζ 6152ζ
(20,10,5,3,2) ψ ψ 0 ζ
(20,10,6,3,2) ψ 66ψ 68 0 68ζ
(20,11,6,3,2) ψ,ω 66ψ 69 0 69ζ
(20,12,6,3,2) ψ,ω 66ψ,ω 69 0 69ζ
(20,10,6,4,2) ψ 612ψ 614 0 614ζ
(20,11,6,4,2) ψ,ω 658ψ 6179 0 6179ζ
(20,12,6,4,2) ψ,ω 658ψ,ω 6191 0 6191ζ
(20,11,7,4,2) ψ,ω 666ψ 6249 0 6249ζ
(20,12,7,4,2) ψ,ω 666ψ,ω 6301 1 6301ζ
(20,12,8,4,2) ψ,ω 666ψ,ω 6305 0 6305ζ
(20,10,6,4,3) ψ 612ψ 614 0 614ζ
(20,11,6,4,3) ψ,ω 686ψ 6263 0 6263ζ
(20,12,6,4,3) ψ,ω 686ψ,ω 6279 0 6279ζ
(20,11,7,4,3) ψ,ω 6130ψ 6551 0 6551ζ
(20,12,7,4,3) ψ,ω 6130ψ,ω 6719 1 6719ζ
(20,12,8,4,3) ψ,ω 6130ψ,ω 6731 0 6731ζ
(20,11,7,5,3) ψ,ω 6146ψ 6641 1 6641ζ
(20,12,7,5,3) ψ,ω 6146ψ,ω 6917 1 6917ζ
(20,12,8,5,3) ψ,ω 6146ψ,ω 6981 0 6981ζ
(20,12,8,6,3) ψ,ω 6146ψ,ω 6987 1 6987ζ
(20,11,7,5,4) ψ,ω 6152ψ 6667 0 6667ζ
(20,12,7,5,4) ψ,ω 6152ψ,ω 6971 1 6971ζ
(20,12,8,5,4) ψ,ω 6152ψ,ω 61067 1 61067ζ
(20,12,8,6,4) ψ,ω 6152ψ,ω 61093 0 61093ζ
(20,12,8,6,5) ψ,ω 6152ψ,ω 61101 0 61101ζ
(21,11,6,3,2) ψ,ω 66ψ 69ψ 69 0
(21,12,6,3,2) ψ,ω 66ψ,ω 69ψ 69 0
(21,11,6,4,2) ψ,ω 658ψ 6179ψ 6189 0
(21,12,6,4,2) ψ,ω 658ψ,ω 6191ψ 6205 1
(21,11,7,4,2) ψ,ω 666ψ 6249ψ 6267 0
(21,12,7,4,2) ψ,ω 666ψ,ω 6301ψ 6351 0
(21,13,7,4,2) ψ,ω 666ψ,ω 6301ψ,ω 6355 0
(21,12,8,4,2) ψ,ω 666ψ,ω 6305ψ 6359 1
(21,13,8,4,2) ψ,ω 666ψ,ω 6305ψ,ω 6365 0
(21,11,6,4,3) ψ,ω 686ψ 6263ψ 6275 0
(21,12,6,4,3) ψ,ω 686ψ,ω 6279ψ 6295 1
(21,11,7,4,3) ψ,ω 6130ψ 6551ψ 6599 0
(21,12,7,4,3) ψ,ω 6130ψ,ω 6719ψ 6875 1
(21,13,7,4,3) ψ,ω 6130ψ,ω 6719ψ,ω 6887 1
(21,12,8,4,3) ψ,ω 6130ψ,ω 6731ψ 6897 1
(21,13,8,4,3) ψ,ω 6130ψ,ω 6731ψ,ω 6915 0
(21,11,7,5,3) ψ,ω 6146ψ 6641ψ 6705 1
(21,12,7,5,3) ψ,ω 6146ψ,ω 6917ψ 61161 1
(21,13,7,5,3) ψ,ω 6146ψ,ω 6917ψ,ω 61189 1
(21,12,8,5,3) ψ,ω 6146ψ,ω 6981ψ 61289 1
(21,13,8,5,3) ψ,ω 6146ψ,ω 6981ψ,ω 61367 1
(21,13,9,5,3) ψ,ω 6146ψ,ω 6981ψ,ω 61375 1
(21,12,8,6,3) ψ,ω 6146ψ,ω 6987ψ 61301 1
(21,13,8,6,3) ψ,ω 6146ψ,ω 6987ψ,ω 61385 1
(21,13,9,6,3) ψ,ω 6146ψ,ω 6987ψ,ω 61397 0
(21,11,7,5,4) ψ,ω 6152ψ 6667ψ 6737 0
(21,12,7,5,4) ψ,ω 6152ψ,ω 6971ψ 61241 1
(21,13,7,5,4) ψ,ω 6152ψ,ω 6971ψ,ω 61275 1
(21,12,8,5,4) ψ,ω 6152ψ,ω 61067ψ 61429 1
(21,13,8,5,4) ψ,ω 6152ψ,ω 61067ψ,ω 61533 1
(21,13,9,5,4) ψ,ω 6152ψ,ω 61067ψ,ω 61547 2
(21,12,8,6,4) ψ,ω 6152ψ,ω 61093ψ 61481 0
(21,13,8,6,4) ψ,ω 6152ψ,ω 61093ψ,ω 61611 2
(21,13,9,6,4) ψ,ω 6152ψ,ω 61093ψ,ω 61647 1
(21,13,9,7,4) ψ,ω 6152ψ,ω 61093ψ,ω 61653 1
(21,12,8,6,5) ψ,ω 6152ψ,ω 61101ψ 61497 1
(21,13,8,6,5) ψ,ω 6152ψ,ω 61101ψ,ω 61635 1
(21,13,9,6,5) ψ,ω 6152ψ,ω 61101ψ,ω 61679 1
(21,13,9,7,5) ψ,ω 6152ψ,ω 61101ψ,ω 61693 1
(21,13,9,7,6) ψ,ω 6152ψ,ω 61101ψ,ω 61699 1