N = 46, t = 5, v = 2 - Classification of (λ; y)-balanced CAs with N = 46 rows, strength t = 5 and alphabet size v=2 in the format CAK# time, where # represents the number of non-equivalent balanced CAs and the time is given in seconds.

Previous table: (45;5,k,2)Back to overviewNext table: (47;5,k,2)
λ (23,11,5,2,1) (22,11,5,2,1) (23,10,5,2,1) (22,10,5,2,1) (21,10,5,2,1)
y CAKλy# time (s) CAKλy# time (s) CAKλy# time (s) CAKλy# time (s) CAKλy# time (s)
(23,12,6,3,2) 0 ζ κ ζ,κ ζ,κ
(23,12,6,4,2) 62 0 62ζ 62κ 62ζ,κ 62ζ,κ
(23,12,7,4,2) 644 0 644ζ 644κ 644ζ,κ 644ζ,κ
(23,12,6,4,3) 62 0 62ζ 62κ 62ζ,κ 62ζ,κ
(23,12,7,4,3) 72 0 72ζ 72κ 72ζ,κ 72ζ,κ
(23,12,7,5,3) 74 0 74ζ 74κ 74ζ,κ 74ζ,κ
(23,12,7,5,4) 78 1 78ζ 78κ 78ζ,κ 78ζ,κ
(24,12,6,3,2) ψ 51 0 ψ,κ 51 0 51ζ
(24,12,6,4,2) 62ψ 63 0 62ψ,κ 66 0 66ζ
(24,12,7,4,2) 644ψ 680 0 644ψ,κ 6113 0 6113ζ
(24,13,7,4,2) 644ψ,ω 6121 0 656ψ 6339 1 6339ζ
(24,13,8,4,2) 644ψ,ω 6129 1 658ψ 6400 1 6400ζ
(24,12,6,4,3) 62ψ 63 0 62ψ,κ 66 0 66ζ
(24,12,7,4,3) 72ψ 74 1 72ψ,κ 74 1 74ζ
(24,13,7,4,3) 72ψ,ω 713 1 79ψ 7123 4 7123ζ
(24,13,8,4,3) 72ψ,ω 714 1 715ψ 7191 4 7191ζ
(24,12,7,5,3) 74ψ 79 1 74ψ,κ 79 1 79ζ
(24,13,7,5,3) 74ψ,ω 723 1 711ψ 7158 4 7158ζ
(24,13,8,5,3) 74ψ,ω 733 1 734ψ 7691 10 7691ζ
(24,13,8,6,3) 74ψ,ω 733 1 734ψ 7693 8 7693ζ
(24,12,7,5,4) 78ψ 719 1 78ψ,κ 720 1 720ζ
(24,13,7,5,4) 78ψ,ω 742 1 715ψ 7192 4 7192ζ
(24,13,8,5,4) 78ψ,ω 767 2 746ψ 7966 10 7966ζ
(24,13,8,6,4) 78ψ,ω 774 1 746ψ 7980 8 7980ζ
(24,13,8,6,5) 78ψ,ω 781 2 746ψ 7989 8 7989ζ
(23,13,7,4,2) 644ω 644ζ,ω 656 0 656ζ 656ζ
(23,13,8,4,2) 644ω 644ζ,ω 658 0 658ζ 658ζ
(23,13,7,4,3) 72ω 72ζ,ω 79 0 79ζ 79ζ
(23,13,8,4,3) 72ω 72ζ,ω 715 0 715ζ 715ζ
(23,13,7,5,3) 74ω 74ζ,ω 711 0 711ζ 711ζ
(23,13,8,5,3) 74ω 74ζ,ω 734 1 734ζ 734ζ
(23,13,8,6,3) 74ω 74ζ,ω 734 1 734ζ 734ζ
(23,13,7,5,4) 78ω 78ζ,ω 715 1 715ζ 715ζ
(23,13,8,5,4) 78ω 78ζ,ω 746 1 746ζ 746ζ
(23,13,8,6,4) 78ω 78ζ,ω 746 0 746ζ 746ζ
(23,13,8,6,5) 78ω 78ζ,ω 746 0 746ζ 746ζ
(24,14,7,4,2) 644ψ,ω 6121ω 656ψ,ω 6362 0 6362ζ
(24,14,8,4,2) 644ψ,ω 6129ω 658ψ,ω 6435 1 6435ζ
(24,14,7,4,3) 72ψ,ω 713ω 79ψ,ω 7130 3 7130ζ
(24,14,8,4,3) 72ψ,ω 714ω 715ψ,ω 7206 4 7206ζ
(24,14,7,5,3) 74ψ,ω 723ω 711ψ,ω 7165 5 7165ζ
(24,14,8,5,3) 74ψ,ω 733ω 734ψ,ω 71227 11 71227ζ
(24,14,9,5,3) 74ψ,ω 733ω 734ψ,ω 71342 11 71342ζ
(24,14,8,6,3) 74ψ,ω 733ω 734ψ,ω 71229 8 71229ζ
(24,14,9,6,3) 74ψ,ω 733ω 734ψ,ω 71368 8 71368ζ
(24,14,7,5,4) 78ψ,ω 742ω 715ψ,ω 7199 5 7199ζ
(24,14,8,5,4) 78ψ,ω 767ω 746ψ,ω 71828 13 71828ζ
(24,14,9,5,4) 78ψ,ω 767ω 746ψ,ω 72091 13 72091ζ
(24,14,8,6,4) 78ψ,ω 774ω 746ψ,ω 71842 10 71842ζ
(24,14,9,6,4) 78ψ,ω 774ω 746ψ,ω 72312 15 72312ζ
(24,14,9,7,4) 78ψ,ω 774ω 746ψ,ω 72312 10 72312ζ
(24,14,8,6,5) 78ψ,ω 781ω 746ψ,ω 71851 10 71851ζ
(24,14,9,6,5) 78ψ,ω 781ω 746ψ,ω 72352 13 72352ζ
(24,14,9,7,5) 78ψ,ω 781ω 746ψ,ω 72352 10 72352ζ
(24,14,9,7,6) 78ψ,ω 781ω 746ψ,ω 72352 9 72352ζ
(25,13,7,4,2) 644ψ,ω 6121ψ 656ψ 6339ψ 6345 1
(25,14,7,4,2) 644ψ,ω 6121ψ,ω 656ψ,ω 6362ψ 6370 0
(25,13,8,4,2) 644ψ,ω 6129ψ 658ψ 6400ψ 6409 1
(25,14,8,4,2) 644ψ,ω 6129ψ,ω 658ψ,ω 6435ψ 6457 1
(25,15,8,4,2) 644ψ,ω 6129ψ,ω 658ψ,ω 6435ψ,ω 6460 1
(25,13,7,4,3) 72ψ,ω 713ψ 79ψ 7123ψ 7152 4
(25,14,7,4,3) 72ψ,ω 713ψ,ω 79ψ,ω 7130ψ 7168 4
(25,13,8,4,3) 72ψ,ω 714ψ 715ψ 7191ψ 7235 5
(25,14,8,4,3) 72ψ,ω 714ψ,ω 715ψ,ω 7206ψ 7271 5
(25,15,8,4,3) 72ψ,ω 714ψ,ω 715ψ,ω 7206ψ,ω 7271 5
(25,13,7,5,3) 74ψ,ω 723ψ 711ψ 7158ψ 7192 4
(25,14,7,5,3) 74ψ,ω 723ψ,ω 711ψ,ω 7165ψ 7210 5
(25,13,8,5,3) 74ψ,ω 733ψ 734ψ 7691ψ 7845 10
(25,14,8,5,3) 74ψ,ω 733ψ,ω 734ψ,ω 71227ψ 71934 14
(25,15,8,5,3) 74ψ,ω 733ψ,ω 734ψ,ω 71227ψ,ω 71980 14
(25,14,9,5,3) 74ψ,ω 733ψ,ω 734ψ,ω 71342ψ 72156 14
(25,15,9,5,3) 74ψ,ω 733ψ,ω 734ψ,ω 71342ψ,ω 72270 15
(25,15,10,5,3) 74ψ,ω 733ψ,ω 734ψ,ω 71342ψ,ω 72274 14
(25,13,8,6,3) 74ψ,ω 733ψ 734ψ 7693ψ 7847 7
(25,14,8,6,3) 74ψ,ω 733ψ,ω 734ψ,ω 71229ψ 71936 10
(25,15,8,6,3) 74ψ,ω 733ψ,ω 734ψ,ω 71229ψ,ω 71982 10
(25,14,9,6,3) 74ψ,ω 733ψ,ω 734ψ,ω 71368ψ 72230 11
(25,15,9,6,3) 74ψ,ω 733ψ,ω 734ψ,ω 71368ψ,ω 72372 9
(25,15,10,6,3) 74ψ,ω 733ψ,ω 734ψ,ω 71368ψ,ω 72384 10
(25,13,7,5,4) 78ψ,ω 742ψ 715ψ 7192ψ 7229 5
(25,14,7,5,4) 78ψ,ω 742ψ,ω 715ψ,ω 7199ψ 7249 5
(25,13,8,5,4) 78ψ,ω 767ψ 746ψ 7966ψ 71202 11
(25,14,8,5,4) 78ψ,ω 767ψ,ω 746ψ,ω 71828ψ 73117 17
(25,15,8,5,4) 78ψ,ω 767ψ,ω 746ψ,ω 71828ψ,ω 73226 17
(25,14,9,5,4) 78ψ,ω 767ψ,ω 746ψ,ω 72091ψ 73647 18
(25,15,9,5,4) 78ψ,ω 767ψ,ω 746ψ,ω 72091ψ,ω 73940 17
(25,15,10,5,4) 78ψ,ω 767ψ,ω 746ψ,ω 72091ψ,ω 73951 18
(25,13,8,6,4) 78ψ,ω 774ψ 746ψ 7980ψ 71216 8
(25,14,8,6,4) 78ψ,ω 774ψ,ω 746ψ,ω 71842ψ 73137 13
(25,15,8,6,4) 78ψ,ω 774ψ,ω 746ψ,ω 71842ψ,ω 73246 11
(25,14,9,6,4) 78ψ,ω 774ψ,ω 746ψ,ω 72312ψ 74320 19
(25,15,9,6,4) 78ψ,ω 774ψ,ω 746ψ,ω 72312ψ,ω 74938 20
(25,15,10,6,4) 78ψ,ω 774ψ,ω 746ψ,ω 72312ψ,ω 75071 21
(25,14,9,7,4) 78ψ,ω 774ψ,ω 746ψ,ω 72312ψ 74320 14
(25,15,9,7,4) 78ψ,ω 774ψ,ω 746ψ,ω 72312ψ,ω 74938 14
(25,15,10,7,4) 78ψ,ω 774ψ,ω 746ψ,ω 72312ψ,ω 75110 19
(25,15,10,8,4) 78ψ,ω 774ψ,ω 746ψ,ω 72312ψ,ω 75110 14
(25,13,8,6,5) 78ψ,ω 781ψ 746ψ 7989ψ 71225 8
(25,14,8,6,5) 78ψ,ω 781ψ,ω 746ψ,ω 71851ψ 73149 13
(25,15,8,6,5) 78ψ,ω 781ψ,ω 746ψ,ω 71851ψ,ω 73258 12
(25,14,9,6,5) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ 74470 19
(25,15,9,6,5) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75168 20
(25,15,10,6,5) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75333 20
(25,14,9,7,5) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ 74470 14
(25,15,9,7,5) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75168 14
(25,15,10,7,5) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75461 23
(25,15,10,8,5) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75461 15
(25,14,9,7,6) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ 74470 15
(25,15,9,7,6) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75168 14
(25,15,10,7,6) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75483 21
(25,15,10,8,6) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75483 14
(25,15,10,8,7) 78ψ,ω 781ψ,ω 746ψ,ω 72352ψ,ω 75483 15