N = 68, t = 6, v = 2 - Classification of (λ; y)-balanced CAs with N = 68 rows, strength t = 6 and alphabet size v=2 in the format CAK# time, where # represents the number of non-equivalent balanced CAs and the time is given in seconds.

Previous table: (67;6,k,2)Back to overviewNext table: (69;6,k,2)
λ (34,17,8,4,2,1) (34,16,8,4,2,1) (33,16,8,4,2,1) (32,16,8,4,2,1)
y CAKλy# time (s) CAKλy# time (s) CAKλy# time (s) CAKλy# time (s)
(34,17,9,5,3,2) 0 κ ζ,κ ζ,κ
(34,18,9,5,3,2) ω 61 0 61ζ 61ζ
(34,18,10,5,3,2) ω 73 0 73ζ 73ζ
(34,18,10,6,3,2) ω 75 0 75ζ 75ζ
(34,18,10,6,4,2) ω 78 0 78ζ 78ζ
(34,18,10,6,4,3) ω 710 0 710ζ 710ζ
(35,18,9,5,3,2) ψ,ω 61ψ 61 0 61ζ
(35,18,10,5,3,2) ψ,ω 73ψ 79 0 79ζ
(35,19,10,5,3,2) ψ,ω 73ψ,ω 79 0 79ζ
(35,18,10,6,3,2) ψ,ω 75ψ 725 0 725ζ
(35,19,10,6,3,2) ψ,ω 75ψ,ω 743 0 743ζ
(35,19,11,6,3,2) ψ,ω 75ψ,ω 743 0 743ζ
(35,18,10,6,4,2) ψ,ω 78ψ 742 0 742ζ
(35,19,10,6,4,2) ψ,ω 78ψ,ω 793 1 793ζ
(35,19,11,6,4,2) ψ,ω 78ψ,ω 7123 0 7123ζ
(35,19,11,7,4,2) ψ,ω 78ψ,ω 7131 0 7131ζ
(35,18,10,6,4,3) ψ,ω 710ψ 754 1 754ζ
(35,19,10,6,4,3) ψ,ω 710ψ,ω 7122 0 7122ζ
(35,19,11,6,4,3) ψ,ω 710ψ,ω 7175 0 7175ζ
(35,19,11,7,4,3) ψ,ω 710ψ,ω 7203 1 7203ζ
(35,19,11,7,5,3) ψ,ω 710ψ,ω 7215 0 7215ζ
(35,19,11,7,5,4) ψ,ω 710ψ,ω 7221 0 7221ζ
(36,18,9,5,3,2) ψ,ω 61ψ 61ψ 61 0
(36,18,10,5,3,2) ψ,ω 73ψ 79ψ 711 0
(36,19,10,5,3,2) ψ,ω 73ψ,ω 79ψ 711 0
(36,20,10,5,3,2) ψ,ω 73ψ,ω 79ψ,ω 711 0
(36,18,10,6,3,2) ψ,ω 75ψ 725ψ 729 1
(36,19,10,6,3,2) ψ,ω 75ψ,ω 743ψ 755 0
(36,20,10,6,3,2) ψ,ω 75ψ,ω 743ψ,ω 756 0
(36,19,11,6,3,2) ψ,ω 75ψ,ω 743ψ 755 0
(36,20,11,6,3,2) ψ,ω 75ψ,ω 743ψ,ω 756 0
(36,20,12,6,3,2) ψ,ω 75ψ,ω 743ψ,ω 756 0
(36,18,10,6,4,2) ψ,ω 78ψ 742ψ 749 0
(36,19,10,6,4,2) ψ,ω 78ψ,ω 793ψ 7123 1
(36,20,10,6,4,2) ψ,ω 78ψ,ω 793ψ,ω 7127 0
(36,19,11,6,4,2) ψ,ω 78ψ,ω 7123ψ 7181 0
(36,20,11,6,4,2) ψ,ω 78ψ,ω 7123ψ,ω 7197 0
(36,20,12,6,4,2) ψ,ω 78ψ,ω 7123ψ,ω 7200 1
(36,19,11,7,4,2) ψ,ω 78ψ,ω 7131ψ 7197 0
(36,20,11,7,4,2) ψ,ω 78ψ,ω 7131ψ,ω 7221 1
(36,20,12,7,4,2) ψ,ω 78ψ,ω 7131ψ,ω 7230 0
(36,20,12,8,4,2) ψ,ω 78ψ,ω 7131ψ,ω 7232 1
(36,18,10,6,4,3) ψ,ω 710ψ 754ψ 764 0
(36,19,10,6,4,3) ψ,ω 710ψ,ω 7122ψ 7166 0
(36,20,10,6,4,3) ψ,ω 710ψ,ω 7122ψ,ω 7172 1
(36,19,11,6,4,3) ψ,ω 710ψ,ω 7175ψ 7264 1
(36,20,11,6,4,3) ψ,ω 710ψ,ω 7175ψ,ω 7292 1
(36,20,12,6,4,3) ψ,ω 710ψ,ω 7175ψ,ω 7298 0
(36,19,11,7,4,3) ψ,ω 710ψ,ω 7203ψ 7320 1
(36,20,11,7,4,3) ψ,ω 710ψ,ω 7203ψ,ω 7373 1
(36,20,12,7,4,3) ψ,ω 710ψ,ω 7203ψ,ω 7396 2
(36,20,12,8,4,3) ψ,ω 710ψ,ω 7203ψ,ω 7400 1
(36,19,11,7,5,3) ψ,ω 710ψ,ω 7215ψ 7344 0
(36,20,11,7,5,3) ψ,ω 710ψ,ω 7215ψ,ω 7409 0
(36,20,12,7,5,3) ψ,ω 710ψ,ω 7215ψ,ω 7444 1
(36,20,12,8,5,3) ψ,ω 710ψ,ω 7215ψ,ω 7457 2
(36,20,12,8,6,3) ψ,ω 710ψ,ω 7215ψ,ω 7460 0
(36,19,11,7,5,4) ψ,ω 710ψ,ω 7221ψ 7356 0
(36,20,11,7,5,4) ψ,ω 710ψ,ω 7221ψ,ω 7427 1
(36,20,12,7,5,4) ψ,ω 710ψ,ω 7221ψ,ω 7468 1
(36,20,12,8,5,4) ψ,ω 710ψ,ω 7221ψ,ω 7487 1
(36,20,12,8,6,4) ψ,ω 710ψ,ω 7221ψ,ω 7496 1
(36,20,12,8,6,5) ψ,ω 710ψ,ω 7221ψ,ω 7501 1